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Abstract
Despite the large number of cancer chemotherapeutics, cancer treatment is still not very satisfactory. Immune checkpoint 
inhibition has emerged as a new ray of hope in the immunotherapy approach for cancer treatment. Immune checkpoint inhibi-
tors are molecules located on the surface of immune cells that regulate unnecessary immune responses and keep autoimmune 
reactions in check. Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 and anti-programmed 
cell death ligand-1, have been employed to activate receptors on immune cells like T-cells, which can deactivate the immune 
checkpoint and thus reactivate them against cancer cells. However, ICI therapy has limitations, including resistance develop-
ment in patients, its suitability for all patients, multiple organ disorders, and hyper-progression. Therefore, understanding the 
chemical structures of small molecule ICIs may aid in designing and developing novel ICIs with improved efficacy and effi-
ciency for cancer chemotherapy. This review’s novelty lies in its summary of the U.S. Food and Drug Administration-approved 
drugs, repurposed drugs, candidate drugs used alone or in combination with monoclonal antibodies, and novel potential 
lead molecules under preclinical investigation, which may be useful for designing new chemical entities as ICIs. The review 
describes 10 different drugs approved by the U.S. Food and Drug Administration that have demonstrated immune checkpoint 
inhibition targeting the programmed cell death ligand-1/programmed cell death protein-1 signaling, CTLA-4/CD28, TIGIT/
PVR, and CD47/SIRPα pathways, as well as three repurposed drugs, 11 candidate drugs, and nine drugs in combination with 
monoclonal antibodies that are in various phases of clinical trials.
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Introduction
Cancer is among the leading causes of morbidity and mortality in 
humans. The International Agency for Research on Cancer pro-
jects 27.5 million new cancer cases and an alarming mortality 
rate of 16.3 million by 2040. Cancer treatment requires expensive 
procedures and follow-ups, necessitating the development of ad-
vanced, cost-effective therapies. Current cancer treatments involve 
various approaches, including radiotherapy, chemotherapy using 
protein kinase inhibitors and epigenetic modulators, interleukin 
therapy, and anti-angiogenic therapy targeting vascular endothelial 

growth factor, which have been found to enhance the body’s anti-
tumor immunity. Among these therapies, cancer immunotherapy 
has gained significant importance, with enormous market growth.1 
The 2018 Nobel Prize in Physiology or Medicine was awarded for 
immunotherapy with immune checkpoint inhibition, as it has revo-
lutionized cancer treatment. The U.S. Food and Drug Administra-
tion (FDA) has approved programmed cell death protein-1 (PD-1) 
and programmed cell death ligand-1 (PD-L1) antibodies, such as 
Dostarlimab, Avelumab, Atezolizumab, and Nivolumab, for renal, 
prostate, breast, and lung carcinomas. Immune checkpoint inhibi-
tors or modulators, which fall under the category of immunothera-
py, have revolutionized oncology.

Various immunoreceptors, such as V-domain Ig suppressor of 
T cell activation (VISTA), B and T cell attenuator, T cell immu-
noglobulin and ITIM domain (TIGIT), T cell immunoglobulin 
and mucin-domain containing-3 (TIM3), lymphocyte activation 
gene-3, Cytotoxic T-lymphocyte antigen 4 (CTLA-4), PD-1, and 
PD-L1,2 have been employed to inhibit cancer proliferation by 
acting as immune checkpoints that regulate immune responses. 
These checkpoints are significant because correcting their aber-
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rant behavior may strengthen the immune system’s ability to com-
bat cancer cell proliferation. Immune cells, such as T cells, are 
equipped with checkpoints that function as receptors. The interac-
tion between immune checkpoint receptors and complementary re-
ceptors on cancer cells protects cancer cells from T cells, allowing 
the cancer cells to become immortal and evade T cells. Immune 
checkpoint inhibitors (ICIs) prevent these immune checkpoint re-
ceptors from interacting with complementary receptors on cancer 
cells, helping T cells destroy cancerous cells. Anti-PD-L1 or PD-1 
and anti-CTLA4 antibodies are ICIs that have been successfully 
employed as cancer therapeutics.3 Ipilimumab, which has sig-
nificantly improved the quality of life in patients with metastatic 
melanoma, targets CTLA-4, mediating T cell antitumor immune 
responses.4–7 It was the first FDA-approved immune checkpoint 
inhibitor. Later, the FDA approved nivolumab for the inhibition of 
PD-1 in the treatment of advanced melanoma, improving the qual-
ity of life.8,9 Following this research, blocking PD-1 or its ligand 
PD-L1 with monoclonal antibody drugs has gained importance and 
development potential. However, current ICIs have benefitted only 
a few patients,10,11 while others develop resistance and adverse 
side-effects.12,13 Moreover, they can lead to immune-related ad-
verse events (irAEs), causing multiple organ disorders, hyper-pro-
gression,14–16 or overactive immune responses.17–19 Monoclonal 
antibody treatment for inhibiting immune checkpoints has gained 
momentum as a cancer therapy, but it also suffers from toxicities or 
irAEs, which are different from the toxicities linked to traditional 
chemotherapy. These irAEs may affect several organs, including 
the skin, gastrointestinal tract, liver, lungs, and endocrine systems, 
due to the nature of the immune system’s response.

The other side effects include neurotoxicity, myocarditis, he-
matological toxicities, and nephritis.3,20 Identifying these adverse 
events and managing them is necessary to prevent morbidity in 
patients undergoing immunotherapy. Thus, it is evident that there 
is a need for rational design and in-depth clinical and biological 
phenotyping of ICIs to improve the therapeutic outcomes of next-
generation ICIs.

Recently, circular RNAs (circRNAs), which are stable, loop-
structured molecules with both coding and non-coding properties, 
have been reported. They help control cell signaling pathways and 
regulate tumors.21–25 circRNAs modulate immune checkpoint in-
teractions to influence ICI resistance; however, the other adverse 
reactions and resistance to ICIs need further exploration in the case 
of circRNAs. Moreover, the role of circRNA-mediated epigenom-
ics, its control over immune checkpoints, and resistance to cancer 
immunotherapy are yet to be explained.

Among several checkpoint proteins/receptors, PD-1 and 
CTLA-4 play important roles in immune function.26–28 Monoclo-
nal antibodies (mAbs) sometimes have low response rates due to 
poor tissue permeability, inhibition of a single target, long half-
life, and inherent immunogenicity, which is responsible for their 
irAEs. Additionally, they are expensive and involve high costs in 
clinical applications because of their intravenous or subcutaneous 
route of administration. These challenges are major constraints to 
their widespread use in cancer immunotherapy. Thus, an alterna-
tive strategy is necessary to improve the clinical efficacy of cancer 
immunotherapy. To this end, small molecule checkpoint inhibitors 
are gaining importance, as they target tumor immunity, have good 
oral bioavailability, short half-life, lower molecular weights, ex-
tensive penetration into cells and tissues, lower immunogenicity, 
and are cost-effective compared to mAbs.29–33 Small molecules 
also offer easy pharmacokinetic optimization for flexible dosing, 
which may help avoid mAb-associated irAEs. Furthermore, op-

timizing checkpoint inhibitory activity, pharmacokinetic parame-
ters, and unwanted toxicity through structural modifications, guid-
ed by state-of-the-art computational structural and ligand-based 
approaches, can be more easily applied to small molecules than to 
mAbs. These approaches now involve virtual screening to identify 
new lead drug-like molecules for further clinical trials. The virtual 
screening protocols include two major approaches: structure-based 
and ligand-based. The former works on a similarity approach, con-
sidering physicochemical properties, chemical functionality, and 
ligand shape similarity, while the latter is based on the complemen-
tarity of the ligand with the target protein’s binding sites. Predictive 
models developed using these approaches may be useful for virtual 
screening of large databases or focused libraries for selecting lead 
molecules for lead optimization.34–38 Hence, the major limitations 
of mAbs in terms of irAEs may be overcome with chemical enti-
ties under/for preclinical studies, and these may also provide in-
sights for optimization and the design of novel chemical entities 
for cancer immunotherapy. Such small chemical molecules may 
have the potential to develop more effective immune checkpoint 
inhibitors, offering a better alternative to mAbs. Therefore, this 
review is limited to describing small molecules that have shown 
checkpoint inhibitory activity, including FDA-approved drugs, 
repurposed drugs, candidate drugs used alone or in combination 
with mAbs, and novel potential lead molecules under preclinical 
investigation.

Small molecules immune checkpoint inhibitors

Drugs
There are some FDA-approved drugs that work as immune check-
point inhibitors, as shown in Figure 1, along with repurposed 
drugs. FDA-approved drug 1 (Gefitinib) activates the anti-tumor 
activity of immune cells by inhibiting EGF signaling and desta-
bilizing PD-L1. It has been used to treat metastatic non-small cell 
lung cancer patients with abnormal epidermal growth factor recep-
tor and no history of medical treatment for cancer.39

Drugs 2 (Fedratinib) and 3 (Ruxolitinib) downregulated PD-L1 
expression in non-small cell lung cancer (NSCLC) and breast can-
cer cells by targeting Janus kinase/signal transducer and activator 
of transcription pathways.40 These two drugs were approved by the 
FDA in 2019 and 2022 for myelofibrosis and relapsed/refractory 
multiple myeloma, respectively.41

The mitogen-activated protein kinase (MEK1/2) inhibitor, drug 
4 (Selumetinib), approved by the FDA, inhibited PD-L1 in lung 
adenocarcinoma cells and is used for the treatment of neurofi-
bromatosis type 1 in children around the age of 2 years with plexi-
form neurofibromas.42,43

In view of the role of histone acetylation at the PD-L1 promoter 
region in regulating PD-L1 expression, the histone deacetylase in-
hibitor drugs 5 (Belinostat), 6 (Panobinostat), 7 (Vorinostat), and 
8 (Romidepsin) increased PD-L1 expression and enhanced in vivo 
proliferation of cancer cells by inducing cell cycle arrest and pro-
moting apoptosis.44–46 FDA-approved drug 5 is used for treating 
peripheral T-cell lymphoma.47 Drug 6 is an oral deacetylase inhibi-
tor used for treating multiple myeloma.

Injections of drug 8 are employed for the treatment of cutaneous 
T-cell lymphoma in people with a history of prior treatment with 
other medications. Drug 8 is a histone deacetylase inhibitor.48 Fur-
ther, it is in a Phase I pharmacokinetic study in patients with cancer 
and hepatic dysfunctions.

Drug 9 (Etoposide), also an FDA-approved drug used in can-
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cer chemotherapy, interferes with PD-L1 glycosylation induced by 
epithelial-to-mesenchymal transition and disrupts surface PD-L1 
in tumor cells. The drug, along with metformin, is reported to im-
prove the effectiveness of anti-TIM-3 and anti-CTLA-4 therapies. 
The well-known natural drug 10 (Curcumin) also destabilizes PD-
L1, inhibits the deubiquitylation of the CSN5 protein, and supports 
the development of anti-CTLA-4 therapy.49

Repurposed drugs
Several drugs used for diseases other than cancer have also been 
investigated under the novel approach of accelerated drug discov-
ery and development, as it overcomes steps viz. general toxicity, 
pharmacokinetics, and human tolerance. In this context, the fol-

lowing repurposed drugs (Fig. 1, drugs 11–13) showing potential 
in checkpoint inhibition are described below:

The antihypertensive FDA-approved drug 11 (Azelnidipine) 
has been found to inhibit CD47/SIRPα and TIGIT/poliovirus re-
ceptor (PVR) through molecular docking studies using Molecu-
lar Operating Environment software. It has been demonstrated to 
inhibit the growth of CT26 tumors in vivo due to enhanced pen-
etration and improved functioning of CD8+ T cells in tumors.50 
Drug 12 (Metformin), a well-known anti-diabetic drug, activated 
T-cells by triggering AMP-activated protein kinase to influence the 
phosphorylation of PD-L1, preventing PD-L1 glycosylation and 
promoting antitumor immunity.51

Drug 13 (Rapamycin/Sirolimus), a well-known FDA-approved 
immunosuppressant (mTOR inhibitor) used after organ trans-

Fig. 1. Immune checkpoint inhibitors (ICIs): Drugs (1–10) and repurposed drugs (11–13). 
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plants, enhances lysosomal protein degradation and decreases 
protein synthesis.52 Its combination with anti-PD-1 significantly 
reduced tumor growth in a mouse model of lung cancer, where 
an increase in CD3+ T cells and a decrease in FoxP3+ Tregs were 
observed.52

Molecules in clinical trials
The potential drug molecules in various stages of clinical trials 
are shown in Figure 2. Molecule 14 (INCB086550), a PD-L1 in-
hibitor,53,54 reduced tumor growth in mice by activating T cells and 
blocking PD-1/PD-L1 pathways in peripheral blood mononuclear 
cells, representing the activation of the immune system. It is in 
phase 2 clinical trials for solid tumors and may provide alternatives 
to antibody therapies.55

An oral PD-L1 inhibitor, compound 15 (IMMH-010), quickly 
metabolizes into YPD-29B. It exhibits notable antitumor efficacy 
in colon cancer xenograft mouse models and melanoma.56 It is in 
phase 1 clinical trials for malignant neoplasms in advanced malig-
nant solid tumors.57

Compound 16 (MAX-10181) is under phase 1 study, where its 
safety, tolerability, and pharmacokinetic characteristics are being 
evaluated in patients with advanced solid tumors. It interferes with 
the interaction of PD-L1 and PD-1, inhibiting immunosuppressive 
signals.58

ASC61 (NCT05287399), a small-molecule PD-L1 inhibitor, is 
under phase 1 clinical study for its safety in treating solid tumors. 
It is an oral prodrug whose active metabolite, ASC61-A, blocks the 
PD-1/PD-L1 interaction via PD-L1 internalization and dimeriza-
tion. It displayed remarkable antitumor efficacy in multiple animal 

Fig. 2. Immune checkpoint inhibitors (ICIs) under clinical trials. 
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models and humanized mouse models. Preclinical examinations 
revealed significant safety and pharmacokinetic properties in ani-
mal models.59,60

Compound 17, GS-4224, an antiviral drug and PD-L1 inhibitor 
for treating advanced solid tumors, was under phase 1 studies, but 
the studies have been terminated for unknown reasons.61

DNA hypomethylating agents have also been explored for their 
checkpoint inhibition. Among these, compounds 18 (Azacytidine, 
NCT02447666) and 19 (Decitabine) upregulated PD-L1 expres-
sion and potentiated anti-PD-L1 antibody efficacy in different 
cancer mouse models for colorectal cancer, gastric cancer, and 
NSCLC.62,63 They are in phase 2 clinical trials for myelodysplastic 
syndrome and leukemia.64

The combination of decitabine and the poly (ADP-ribose) poly-
merase inhibitor Talazoparib is in a phase 1 clinical trial for thera-
py in relapsed/refractory acute myeloid leukemia.65

An orally available small molecule 20 (CA170), containing L-
threonine, D-asparagine, and L-serine partially linked to urea and 
diacylhydrazine linker moieties, targets both VISTA and PD-L1.66 
A single daily dose suppressed metastasis and tumor growth in 
mouse models of melanoma cells (B16F10) and colorectal cells 
(MC38).67 It rescued interferon gamma release from human pe-
ripheral blood mononuclear cells blocked by recombinant VISTA, 
PD-L1, and PD-L2. In a phase 1 study, it was found to be well-
tolerated at an oral dose of 50–1,200 mg, with a plasma half-life of 
4–9.5 h depending on the dosage.68 In phase 2 studies, it showed 
remarkable clinical activity, with a 30% overall response rate in 
Hodgkin lymphoma and a more than 85% clinical benefit rate at 
400 mg daily, with progression-free survival of up to 19.6 weeks in 
advanced non-squamous NSCLC.69 It is also currently in a phase 1 
trial for advanced solid tumors or lymphomas.70

Additionally, several other PD-L1 inhibitors, such as BPI-

371153, are progressing through phase 1 clinical trials for advanced 
solid tumors or relapsed/refractory lymphoma71; compound 21 
(Tomivosertib) is in phase 2 clinical trials for solid tumors72; com-
pound 22 (Navtemadlin) is in phase 1 clinical trials for Merkel cell 
carcinoma73; compound 23 (Abemaciclib) is in phase 2 clinical 
trials for head and neck neoplasms74; compound 24 (Ciforadenant) 
is in phase 1 clinical trials for the treatment of renal cell cancers75; 
and recently developed small molecules like ABSK043 are in 
phase 1 clinical trials for neoplasms and advanced solid tumors.76

Small molecules have been explored for cancer treatment to 
overcome the limitations of mAbs. The following molecules, PD-1 
and PD-L1 checkpoint inhibitors, are in various stages of clini-
cal trials and have been investigated in combination with different 
mAbs, as shown in Table 1 and Figure 3.77–85 Small molecules are 
used in combination with mAbs to address issues such as lack of 
oral bioavailability and immune-related side effects.

Lead molecules
Apart from the drugs, repurposed drugs, and checkpoint inhibitors 
under different stages of clinical trials discussed above, novel lead 
molecules with the potential to serve as checkpoint inhibitors are 
explored in this section and shown in Figure 4.

Virtual screening using Molecular Operating Environment soft-
ware led to the development of PVR binder compound 34 (Lio-
thyronine), which interferes with interactions between the ITIM 
domain (TIGIT) and PVR, as well as T cell immunoglobulin. Its in 
vivo administration increased CD8+ T cell infiltration and immune 
responses in tumor-bearing mice, leading to tumor growth arrest.86 
Homology modeling of VISTA, coupled with virtual screening, 
identified compound 35 as a VISTA binder with potent immu-
nomodulatory activity in coculture cellular assays.87

Table 1.  Small molecules in clinical trials in combination with mAbs

S.N Small molecule Synergistic mAbs Cancer The phase of  
clinical trials Reference

1 25 (Pexidartinib) 
(MW = 417.09)

Sirolimus Unresectable sarcoma and malignant 
peripheral nerve tumors

Phase 1 77

2 26 (6-Thio-2′-
deoxyguanosine) 
(MW = 283.309)

Cemiplimab Advanced NSCLC Phase 2 78

3 27 (Vismodegib) 
(MW = 420.01)

Atezolizumab Platinum-resistant ovarian, fallopian 
tube, and primary peritoneal cancer

Phase 2 79

4 28 (Cabozantinib) 
(MW = 501.50)

Nivolumab and 
Ipilimumab

Renal-cell carcinoma Phase 3 80

5 29 (Itacitinib) 
(MW = 552.52)

Pembrolizumab Metastatic NSCLC Phase 3 81

6 30 (SF1126) 
(MW = 865.86)

Nivolumab Advanced hepatocellular carcinoma Phase 1 82

7 31 (Sitravatinib) 
(MW = 629.19)

Nivolumab Nonsquamous NSCLC progressing Phase 2 83

8 32 (Talazoparib) 
(MW = 380.35)

Avelumab Repair proficient endometrial cancer Phase 1 84

9 33 (Apatinib) 
(MW = 397.19)

Camrelizumab First-line platinum-resistant or PD-1 
inhibitor resistant recurrent/metastatic 
nasopharyngeal carcinoma

Phase 2 85

mAbs, monoclonal antibodies; MW, molecular weight; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein-1.
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Compound 36, incorporating a benzimidazole moiety with sub-
stituted phenyls, is a VISTA inhibitor with submicromolar binding 
affinity. It promoted VISTA degradation and enhanced the expres-
sion of lipidated MAP1LC3, an autophagosome membrane marker 
in HepG2 cancer cells.88 It also exhibited promising activity in the 
CT26 mouse model by suppressing tumor growth.89

Compound 37 [2-Fluoro-L-fucose (2F-Fuc)] reduced check-
point glycosylation (fucosylation) and PD-1 levels on the surface 
of activated T-cells.90 It increased T-cell activity by inhibiting Fut8 
and reducing PD-1 expression. Its combination with anti-PD-L1 
ameliorated B7-H3 expression and enhanced efficacy in triple-
negative breast cancer.

In addition to the molecules discussed above, other small mol-
ecules reported as ICIs interacting with PD-1 and PD-L1 include 
substituted biphenyls (38–41),30 compound 42 (2-bromopalmi-
tate),49,91 compound 43 (BMS1166) (in preclinical phase),92 and 

compound 44 (NGI-1) (in preclinical phase).93 NGI-1 inhibited 
the activity of STT3A and STT3B, with higher specificity to the 
latter.94,95 The migration, invasion, and proliferation of lung ad-
enocarcinoma cells were well inhibited by the compound.96 NGI-1 
was also found to inhibit triple-negative breast tumors, which tend 
to be “cold” with low T-cell infiltration.93

Conclusions
It is evident from the above discussion that ICIs are substantially 
used clinically for various cancers. ICIs appear to be revolutioniz-
ing cancer therapeutics as an alternative to traditional chemothera-
peutics for treating diverse malignancies. Despite several recent 
advancements in this field, it may still be considered in its infancy. 
Hence, more research is needed to overcome major shortcomings 
such as irAEs and heterogeneity. It is well known that each pa-

Fig. 3. Small molecules as checkpoint inhibitors in clinical trials in combination with monoclonal antibodies (mAbs). 
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tient’s response to ICIs and the onset of irAEs can differ, so a care-
ful understanding of these factors may help in devising strategies 
for personalized treatment.

Compared to widely used mAbs, small molecules offer advan-
tages such as improved drug penetration into tumors or organs, 
enhanced stability, and better movement across cell membranes. 
Although the use of mAbs has been optimistic, they have not 
shown significant clinical improvements in patients with differ-
ent types of cancer at various stages in several clinical trials. The 
efficacy of immunomodulators depends on the cancer type and its 
microenvironment. The therapeutic efficacy of these molecules is 
greatly influenced by mutations and specific molecular changes. 
Thus, identifying the relevant proteins or genes and understand-
ing their molecular mechanisms may help enhance the efficacy 
of current immunomodulators. Another major drawback to con-
sider is off-target toxicity or “cytokine storm”, which needs to be 
addressed for successful treatment with ICIs. Given these limi-
tations, small molecules as immuno-oncology drugs have been 
explored as potential immune checkpoint inhibitors. However, 
these developments are still in the early stages and require fur-

ther exploration to improve efficacy, reduce toxicity, increase 
bioavailability, and ensure specific action for their selection as 
candidate molecules for clinical development. Despite some dis-
advantages, small molecule ICIs have shown potential, and some 
are in various stages of clinical trials as immuno-oncology drugs. 
In this review, we summarized FDA-approved drugs, repurposed 
drugs, candidate drugs alone or in combination with mAbs, and 
novel potential lead molecules under preclinical investigation. 
The review described ten FDA-approved drugs that target PD-
L1/PD-1 signaling, CTLA-4/CD28, TIGIT/PVR, and CD47/
SIRPα pathways, as well as three repurposed drugs, eleven can-
didate drugs alone, and nine in combination with mAbs that are 
in different phases of clinical trials. Additionally, eleven novel 
chemical entities under pre-clinical studies may provide insights 
for optimization and the design of novel chemical entities for 
cancer immunotherapy.
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